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Abstract. This research investigates the numerical approximation of the two-dimensional convection-dominated singu-
larly perturbed problem on square, circular, and elliptic domains. Singularly perturbed boundary value problems present a
significant challenge due to the presence of sharp boundary layers in their solutions. Additionally, the considered domain
exhibits characteristic points, giving rise to a degenerate boundary layer problem. The stiffness of the problem is attributed
to the sharp singular layers, which can result in substantial computational errors if not appropriately addressed. Traditional
numerical methods typically require extensive mesh refinements near the boundary to achieve accurate solutions, which can be
computationally expensive. To address the challenges posed by singularly perturbed problems, we employ physics-informed
neural networks (PINNs). However, PINNs may struggle with rapidly varying singularly perturbed solutions over a small
domain region, leading to inadequate resolution and potentially inaccurate or unstable results. To overcome this limitation,
we introduce a semi-analytic method that augments PINNs with singular layers or corrector functions. Through our numerical
experiments, we demonstrate significant improvements in both accuracy and stability, thus demonstrating the effectiveness
of our proposed approach.
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1. Introduction. The use of neural networks for approximating solutions to differential equations
has gained significant attention in research [9, 15, 19, 5]. Various unsupervised neural network methods
have been developed within this domain, including physics-informed neural networks (PINNs) [23], deep
Ritz method (DRM) [29], and Galerkin Neural Network (GNN) [1]. These methods share a common
characteristic of defining the loss function based on the residual of the differential equation being considered.
PINNs, in particular, utilize collocation points in the space-time domain as inputs, making them well-suited
for solving complex, time-dependent, multi-dimensional equations with intricate domain geometries [21,
25, 28, 24, 30, 18, 26]. They have become popular in scientific machine learning, facilitating the integration
of physics-based and data-driven modeling in a deep learning framework. Nevertheless, the robustness
of PINNs in certain problem types remains an ongoing concern. Notably, PINNs exhibit limitations in
accurately capturing complex and highly nonlinear flow patterns such as turbulence, vortical structures,
and boundary layers [7, 3, 8, 11]. Addressing this challenge holds great significance in scientific machine
learning research, as the development of robust and reliable models is crucial for advancing the field.

The robustness of PINNs is frequently tested when it comes to approximating boundary layers. Con-
vergence issues for PINNs can arise in the context of singularly perturbed differential equations within
bounded regions, mainly when the perturbation parameter is sufficiently small. These challenges also pose
a hurdle for operator learning approaches like DeepONet and FNO [22, 20]. Overcoming these limitations
is crucial for achieving more accurate and reliable predictions across a wide range of PINN applications.
Various techniques have recently been proposed to address the approximation of singular problems. Fourier
feature networks [27], cPINN [14], XPINN [6], and similar approaches have emerged to tackle the spectral
bias of deep neural networks, which limits their capacity to learn high-frequency functions. However, none
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of these techniques mentioned above have been specifically designed to handle thin-layer problems. In
a more recent study conducted by the authors of [2], a theory-guided neural network was proposed to
address boundary layer problems. This approach introduces a network architecture consisting of two inter-
connected networks: the inner and outer networks. The inner network focuses on capturing the asymptotic
expansion approximation of the solution within the boundary layer region, while the outer network handles
the approximation outside of the boundary layer. Both the inner and outer networks consist of multiple
parallel PINN networks, with each network representing a specific order approximation of the solution.
The coupling between the inner and outer networks is enforced through the matching boundary condition
loss.

In this article, we introduce a novel semi-analytic machine learning approach for studying singular
boundary layer behavior. Our framework draws inspiration from singular perturbation analysis and as-
ymptotic expansion methods employed in solving singularly perturbed differential equations; for general
references, see, for example, [10] and the numerous cited articles therein. It is worth noting that boundary
layer analysis for singular perturbation problems is extensively studied and firmly established in applied
mathematics, with much of its development driven by the fluid dynamics community. The novelty of our
approach lies in establishing and introducing a version of PINNs that exploit boundary layer analysis to
approximate sharp transitions. Expanding on the techniques adopted from boundary layer analysis, our
work probes multi-dimensional problems with complex domains.

A singularly perturbed boundary value problem, such as the one presented in equations (1.1) below,
is widely recognized for inducing a thin layer in proximity to the boundary, commonly referred to as a
boundary layer. Within this boundary layer, the solution undergoes a rapid transition. Extensive scholarly
research has been conducted on the mathematical theory of singular perturbations and boundary layers.
Regarding the numerical approximation of singular perturbation problems, a significant computational
error arises near the boundary due to the stiffness of the solution within the boundary layer. Consequently,
achieving a sufficiently accurate approximation of the solution in the boundary vicinity typically necessitates
a substantial refinement of the mesh, particularly for conventional numerical schemes. However, instead of
relying on extensive mesh refinements, novel semi-analytic methods have been proposed. These methods
primarily involve enriching the basis of traditional numerical techniques, such as finite elements or finite
volumes, by incorporating a global basis function known as the corrector. The corrector effectively captures
the singular behavior of the solution within the boundary layers. These semi-analytic methods have
demonstrated remarkable efficiency without requiring mesh refinement near the boundary.

In this paper, we address the challenge posed by boundary layers by performing a comprehensive
boundary layer analysis for each singular perturbation problem. Through this analysis, we identify the
corrector function, which accurately captures the singular behavior within the boundary layer. Subse-
quently, we develop a new semi-analytic approach by constructing Neural Networks enriched with the
corrector function, embedded within the structure of a two-layer PINN with hard constraints, referred to
as a singular layer PINN (SL-PINN). To validate the effectiveness of our proposed method, we conduct
numerical simulations for each example presented below. The results confirm that our SL-PINNs nat-
urally capture the singular behavior of boundary layers and provide highly accurate approximations for
the singularly perturbed boundary value problems discussed in this article. This paper primarily focuses
on studying the two-dimensional convection-diffusion equations in various domains such as a unit square,
circle, or ellipse denoted by Ω:

Lεu
ε := −ε∆uε − uεy = f, in Ω,

uε = 0, at ∂Ω.
(1.1)

The main focus of this study is to develop semi-analytical neural networks that can effectively incorporate
physics-based information and improve their performance by integrating corrector functions. Our approach
to constructing a two-layer neural network shares similarities with PINNs, but emphasizes the inclusion of
hard constraints in enforcing boundary conditions. We make use of a straightforward neural network, û,
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multiplied by g(x, y) to satisfy the boundary condition as follows:

(1.2) u(x, y; θ) = g(x, y) û(x, y; θ),

where û is defined by the two-layer NN, with g(x, y) = 0 on ∂Ω. We define a two-layer neural network

(1.3) û(x, y; θ) =

n∑
j=1

ciσ(w1jx+ w2jy + bj),

where n is the number of neurons. The network parameters are denoted by

(1.4) θ = (w11, ..., w1n, w21, ..., w2n, b1, ..., bn, c1, ...cn),

and we choose the logistic sigmoid as an activation function, σ(z) = 1/(1 + e−z). The PINNs with hard
constraints described in (1.3) rely on a simplified structure, which enables us to calculate the loss func-
tion using explicit derivatives of û instead of relying on automatic differentiation (AD). This approach is
particularly beneficial when dealing with boundary layers, as it helps avoid potential computational errors
that may arise. It’s important to note that our approach utilizes the two-layer neural network, which
is not only computationally cost-effective but also sufficient for achieving accurate numerical approxima-
tions. Furthermore, by incorporating symbolic computation, our methodology can conveniently extend to
an M -layer neural network. For comparison, while traditional PINNs leverage an M -layer architecture,
our SL-PINNs deploy a two-layer structure. Nonetheless, SL-PINNs significantly surpass the performance
of conventional PINNs.

2. Convection-diffusion equations in a square domain. To begin, we examine two-dimensional
convection-diffusion equations in square domains. To emphasize the presence of the boundary layer, we
employ periodic boundary conditions in the x direction and zero boundary conditions in the y direction:

−ε∆uε − uεy = f, in Ω = (0, 1)× (0, 1),

uε = 0, at y = 0 and y = 1,

uε is periodic in x.

(2.1)

We construct an SL-PINN for the singular perturbation problem and compare its performance with con-
ventional PINNs. To obtain the corrector function, we initiate the process by examining the limit problem,
where we set ε to 0 in the governing equation:

−u0y = f in Ω,

u0 = 0 at y = 1,

u0 is periodic in x.

(2.2)

Along the asymptotic analysis, the boundary layers are defined by the inner expansion uε ∼
∑∞

j=0 ε
jθj .

Let ȳ = y/ε be considered as an O(1) quantity in the boundary layer.

(2.3) −
∞∑
j=0

{εj+1θjxx + εj−1θjȳȳ} −
∞∑
j=0

εj−1θjȳ = 0.

By formally identifying each power of ε, we can derive the corrector equation by selecting the dominant
terms,

−εφ0
yy − φ0

y = 0 in Ω,

φ0 = −u0(x, 0) at y = 0,

φ0 is periodic in x.

(2.4)
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One can easily find an explicit solution of (2.4)

(2.5) φ0 = −u0(x, 0)e
−y/ε − e−1/ε

1− e−1/ε
= −u0(x, 0)e−y/ε + e.s.t.,

where e.s.t. stands for an exponentially small term. Here, we omit further boundary layer analysis, such
as convergence to the limit problem. For more detailed theoretical results, one can refer to the work by
[10],[16].

We modify the 2-layer PINN in (1.2) based on boundary layer analysis, incorporating the profile of the
corrector described in (2.5). Our new SL-PINN is proposed of the form,

(2.6) ũ(x, y; θ) = x(x− 1)((y − 1)û(x, y,θ) + û(x, 0,θ)φ̄0),

where the corrector function is given by φ̄0 = e−
y
ε . The residual loss function is defined by

Loss =
1

N

N∑
i=0

∥Lε(ũ(xi, yi; θ))− f(xi, yi)∥p where (xi, yi) ∈ Ω,(2.7)

where p = 1, 2. Using the fact that the exponentially decaying function φ̄0 satisfies the corrector equation
(2.4), we can deduce the residual loss:

−ε∆ũ− ũy − f = −2ε((y − 1)û(x, y,θ) + û(x, 0,θ)φ̄0)− ε(x2 − x)ûxx(x, 0,θ)φ̄
0

− 2ε((2x− 1)(y − 1)ûx(x, y,θ) + (x2 − x)ûy(x, y,θ))

− 2ε(2x− 1)ûx(x, 0,θ)φ̄
0

− ε(x2 − x)(y − 1)(ûxx(x, y,θ) + ûyy(x, y,θ))− (x2 − x)(û(x, y,θ)

+ (y − 1)ûy(x, y,θ))− f.

(2.8)

Hence, the stiff terms of the residual loss are effectively eliminated. It is worth noting that our SL-PINN
provides accurate approximations, as all terms in (2.8) remain bounded as ε approaches 0, regardless of
the small parameter ε.

We compare the performance of the standard five-layer PINN approximation with our new SL-PINN
approximation. Figure 2.1 displays the numerical solutions of (2.1) with ε = 10−6 when f = sin 2πx.
In the conventional PINN approximation, we make use of an M -layer neural network, where M ≥ 2, to
enhance the performance. However, Figure 2.1 demonstrates that the conventional PINN method fails
to approximate the solution of the singular perturbation problem. On the other hand, our new scheme,
which utilizes only a 2-layer neural network with a small number of neurons, outperforms the conventional
PINN. The numerical results shown in Figure 2.1 and Table 1 provide strong evidence that the SL-PINN
significantly outperforms the conventional PINN method, thanks to the corrector function embedded in the
scheme. It is worth noting that our SL-PINN, enriched with the corrector, produces stable and accurate
approximate solutions, regardless of the small parameter ε. A closer examination can be made by referring
to Figure 2.2. The one-dimensional profile of predicted solutions at x = 0.25 allows for a clear comparison.
It is evident from Figure 2.2 that the L1 and L2 training approaches provide accurate approximations.
However, the conventional PINN falls short in capturing the sharp transition near the boundary layer.

3. Convection-diffusion equations on a circular domain. We shift our focus to the convection-
diffusion equation within a circular domain. We begin by examining the time-independent problem and
subsequently delve into the computation of the time-dependent equations.

3.1. Time-indepedent problem. We examine the convection-diffusion equation in a circular domain
such that

Lεu
ε:=− ε∆uε − uεy = f, in Ω = {(x, y)|x2 + y2 < 1}

uε = 0, at ∂Ω.
(3.1)
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(a) True solution (b) SL-PINN using L2 training

(c) SL-PINN using L1 training (d) Conventional PINN

Fig. 2.1: Numerical prediction of (2.1) with ε = 10−6 and f = sin(2πx). For our simulations, we select a
uniform grid of 50 discretized points in each of the x and y directions.

The singularly perturbed problem described in equation (3.1) requires careful treatment when conducting
a boundary layer analysis due to the presence of a degenerate boundary layer near the characteristic
points at (±1, 0) [12]. To develop the boundary layer analysis, we utilize the polar coordinates such that
x = r cos ξ, y = r sin ξ. By setting uε(x, y) = vε(r, ξ), we derive that

Pεv
ε:=

1

r2
(
−ε(vεξξ + rvεr + r2vεrr)− r2 sin ξvεr − r cos ξvεξ

)
= f in D,

vε(1, ξ) = 0 at 0 ≤ ξ ≤ 2π,
(3.2)

where D := {(r, ξ)|0 < r < 1, 0 ≤ ξ ≤ 2π}. For the sake of simplicity, we define the upper semi-circle as
Γ+ := {(x, y)|x2+y2 = 1, y > 0} and the lower semi-circle as Γ− := {(x, y)|x2+y2 = 1, y < 0}. Performing
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Fig. 2.2: The one-dimensional profile of predicted solutions along the line x = 0.25.

the boundary layer analysis as in [12], we are led to the following equation for the corrector equation

−εφ0
rr − (sin ξ)φ0

r = 0, for 0 < r < 1, 0 < ξ ≤ 2π,

φ0 = −v0(cos ξ, sin ξ), on Γ−,

φ0 → 0 as r → 0.

(3.3)

Hence, we are able to find an explicit solution of the correction equation (3.3):

(3.4) φ0 = −v0(cos ξ sin ξ) exp
(
sin ξ

ε
(1− r)

)
χπ,2π(ξ),

where χ stands for the characteristic function. To match the boundary condition in our numerical scheme,
we introduce a cut-off function to derive an approximate form

(3.5) φ̄0 = exp

(
sin ξ

ε
(1− r)

)
χπ,2π(ξ)δ(r),

where δ(r) is a smooth cut-off function such that δ(r) = 1 for r ∈ [3/4, 1] and = 0 for r ∈ [0, 1/2]. We now
establish the semi-analytic SL-PINN method as

(3.6) ṽ(r, ξ; θ) = (v̂(r, ξ,θ)− v̂(1, ξ,θ)φ̄0)C(r, ξ),

where C(r, ξ) is given by

C(r, ξ) =

{
1− r3, if 0 ≤ ξ ≤ π,

1− r3 − (r sin ξ)3, if π < ξ < 2π,
(3.7)

and v̂(r, ξ) = û(x, y). Then, the residual loss is defined by

Loss =
1

N

N∑
i=0

∥Pεṽ((ri, ξi;θ))− f∥p for (ri, ξi) ∈ D,(3.8)
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where p = 1, 2. Since the boundary layer behavior occurs near the lower semi-circle, we divide the residual
loss (3.8) into two parts: 0 ≤ ξ ≤ π and π ≤ ξ ≤ 2π. For the case of 0 ≤ ξ ≤ π, the calculation of the
residual loss is straightforward:

Pεṽ((r, ξ,θ))− f

= −ε( 1
r2

− r)v̂ξξ(r, ξ,θ) + (r2 − 1

r
) cos(ξ)v̂ξ(r, ξ,θ)− ε(1− r3)v̂rr(r, ξ,θ)

+ (6ε+ εr2 − ε

r
− sin(ξ)(1− r3))v̂r(r, ξ,θ) + (3ε+

6ε

r
+ 3r2 sin(ξ))v̂(r, ξ,θ)− f,

(3.9)

where 0 < r ≤ 1 and 0 ≤ ξ ≤ π. However, in the case of π ≤ ξ ≤ 2π, the introduction of the boundary layer
element in (3.6) and the inclusion of the regularizing term in (3.7) complicate the residual loss as follows:

Pεṽ((r, ξ,θ))− f

= −ε
(

1

r2
− r − r sin3(ξ)

)
v̂ξξ(r, ξ,θ)

+

(
6εr sin2(ξ) cos(ξ) + (r2 − 1

r
+ r2 sin3(ξ)) cos(ξ)

)
v̂ξ(r, ξ,θ)

− ε
(
1− r3 − r3 sin3(ξ)

)
v̂rr(r, ξ,θ)

+
(
6ε+ εr2 − ε

r
+ 7εr2 sin3(ξ) + r3 sin3(ξ)− (1− r3) sin(ξ)

)
v̂r(r, ξ,θ)

+

(
3ε+

6ε

r
+ 6εr sin(ξ) + +6r2 sin(ξ)

)
v̂(r, ξ,θ)

+ v̂(1, ξ,θ)
[
ε (C(r, ξ)δrr + (rC(r, ξ) + 2Cr(r, ξ)) δr + (rCr(r, ξ) + Crr(r, ξ))δ)

+ C(r, ξ) sin(ξ)δr − Cr(r, ξ) sin(ξ)δ
]
exp

(
sin ξ

ε
(1− r)

)
+

δ

r2

[
(εv̂ξξ(1, ξ,θ) + (2− r) cos(ξ)v̂ξ(1, ξ,θ)− (1− r) sin(ξ)v̂(1, ξ,θ))C(r, ξ)

+ (2εv̂ξ(1, ξ,θ) + (2− r) cos(ξ)v̂(1, ξ,θ))Cξ(r, ξ) + εv̂(1, ξ,θ)Cξξ(r, ξ)
]
exp

(
sin ξ

ε
(1− r)

)
+ C(r, ξ)v̂(1, ξ,θ)

δ(r)

r2
(
(1− r) cos2(ξ)

ε
) exp

(
sin ξ

ε
(1− r)

)
− f,

(3.10)

where 0 < r ≤ 1 and π < ξ < 2π. To make the computation in (3.10) feasible, we extract the largest order
term in ε, which includes O(ε−1) such that

(3.11) ψ(r, ξ,θ) := (1− r3 − (r sin(ξ)3)v̂(1, ξ,θ)
δ(r)

r2

(
1− r

ε
cos2 ξ

)
exp

(
sin ξ

ε
(1− r)

)
.

By the triangular inequality, the loss in (3.8) becomes

(3.12) Loss ≤ 1

N

N∑
i=0

|ψ(ri, ξi,θ)|+
1

N

N∑
i=0

|Pεṽ((ri, ξi,θ))− ψ(ri, ξi,θ)− f |,

The rightmost term does not include a large order term such as εα (where α < 0) since ψ contains the large
terms such as ε−1. Hence, this part can be computed using conventional L1 or L2 loss. Since ψ contains
O(ε−1), we handle ψ using L1 loss. More precisely, let us suppose we choose the number of sampling points
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N to be sufficiently large

1

N

N∑
i=0

|ψ(ri, ξi,θ)| ≈
1

π

∫ 2π

π

∫ 1

0

|ψ(r, ξ,θ)|drdξ

=
1

π

∫ 2π

π

∫ 1

0

|1− r3 − r3 sin3 ξ||v̂(1, ξ,θ)| |δ(r)|
r2

1− r

ε
cos2 ξ exp

(
sin ξ

ε
(1− r)

)
drdξ

≤ 2

π

∫ 2π

π

∫ 1

0

|v̂(1, ξ,θ)| |δ(r)|
r2

1− r

ε
cos2 ξ exp

(
sin ξ

ε
(1− r)

)
drdξ.

(3.13)

Note that δ(r) is a smooth cut-off function such that δ(r) = 1 for r ∈ [3/4, 1] and = 0 for r ∈ [0, 1/2],

1

π

∫ 2π

π

∫ 1

0

|ψ(r, ξ,θ)|drdξ ≤ 2

π

∫ 2π

π

∫ 1

1
2

|v̂(1, ξ,θ)| 1
r2

1− r

ε
cos2 ξ exp

(
sin ξ

ε
(1− r)

)
drdξ

≤ 8

π

∫ 2π

π

∫ 1

1
2

|v̂(1, ξ,θ)|1− r

ε
cos2 ξ exp

(
sin ξ

ε
(1− r)

)
drdξ

≤ 8maxπ≤ξ≤2π|v̂(1, ξ,θ)|
π

∫ 2π

π

∫ 1

1
2

1− r

ε
cos2 ξ exp

(
sin ξ

ε
(1− r)

)
drdξ

≤ 8maxπ≤ξ≤2π|v̂(1, ξ,θ)|
π

∫ 2π

π

∫ 1

1
2

1− r

ε
| cos ξ| exp

(
sin ξ

ε
(1− r)

)
drdξ

≤ 16maxπ≤ξ≤2π|v̂(1, ξ,θ)|
π

∫ 2π

3π
2

∫ 1

1
2

1− r

ε
cos ξ exp

(
sin ξ

ε
(1− r)

)
drdξ

(3.14)

By setting 1−r
ε = r, we have

1

π

∫ 2π

π

∫ 1

0

|ψ(r, ξ,θ)|drdξ ≤ Kε

∫ 2π

3π
2

∫ 1
2ε

0

r cos ξ exp (r sin ξ) drdξ

= Kε

∫ 1
2ε

0

[
er sin ξ

]2π
ξ= 3π

2

dr

= Kε

∫ 1
2ε

0

1− e−rdr

= Kε
[
r + e−r

] 1
2ε

r=0

=
K

2
+Kεe−

1
2ε −Kε.

(3.15)

Thus, in (3.12), we focus on minimizing the rightmost term, as the first term on the right-hand side of
(3.12) becomes nearly constant by (3.15) when ε is sufficiently small. This simplification enables feasible
computations in our analysis.

The performance of our new approach is demonstrated through a series of numerical experiments in
Figure (3.1)-(3.5). For numerical experiments, we choose 50 uniformly discretized grid points to be used in
each ξ and r direction. It is important to note that if f does not vanish at the characteristic points (±1, 0),
the function f(x, y) becomes incompatible due to the emergence of singularities in its derivatives at these
points. For the sake of simplicity, in this paper, we consider the first compatibility condition, that is,

(3.16)
∂p1+p2f

∂xp1∂yp2
= 0, at (±1, 0),

for 0 ≤ 2p1+p2 ≤ 2 and p1, p2 ≥ 0. For more details on compatibility conditions, see e.g. [12]. We compare
the performance of the standard five-layer PINN approximation with our SL-PINN approximation. Figure



SEMI-ANALYTIC PINN METHODS 9

(a) True solution (b) SL-PINN using L2 training

(c) SL-PINN using L1 training (d) Conventional PINN

Fig. 3.1: Numerical prediction of (3.1) with ε = 10−6 and f = (1− x2)2. For our simulations, we select a
uniform grid of 50 discretized points in each of the r and ξ directions.

3.1 displays the numerical solutions of (3.1) with ε = 10−6 when f = (1−x2)2. Figure 3.1 clearly illustrates
the failure of the conventional PINN method in approximating the solution of the singular perturbation
problem. On the contrary, our SL-PINN significantly outperforms the conventional PINN method. The
numerical results depicted in Figure 3.1 and Table 1 offer compelling evidence that the semi-analytic
SL-PINN outperforms the conventional PINN method significantly. This improvement is attributed to
the incorporation of a corrector function within the scheme. Our SL-PINN, enriched with the corrector,
consistently generates stable and accurate approximate solutions, irrespective of the small parameter ε.
For a more detailed analysis, Figure 3.2 provides a closer examination of the one-dimensional profile of
predicted solutions at ξ = π/2, enabling a clear and direct comparison. Figure 3.2 clearly demonstrates that
both the L1 and L2 training approaches yield highly accurate approximations. However, the conventional
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Fig. 3.2: The one-dimensional profile of predicted solutions along the line ξ = π/2.

PINN method falls short when it comes to capturing the sharp transition near the boundary layer.
To delve deeper into the subject, we consider a non-compatible case where f = 1, as shown in Figure

3.3. As mentioned earlier, this non-compatible case introduces an additional singularity when f does not
vanish at the characteristic points (±1, 0). Analyzing the boundary layer in this scenario requires careful
treatment, as discussed in [17]. However, our SL-PINN approach effectively resolves the boundary layer
behavior, surpassing the limitations posed by theoretical singularities. We compare the performance of
the standard five-layer PINN approximation with our novel SL-PINN approximation. Figure 3.3 clearly
demonstrates the failure of the conventional PINN method in accurately approximating the solution of
the singular perturbation problem. In contrast, our SL-PINN, utilizing a 2-layer neural network with a
small number of neurons, significantly outperforms the conventional PINN method. The numerical results
presented in Figure 3.3 and Table 1 provide compelling evidence of the superior performance of our SL-PINN
approach over the conventional PINN method. For a closer examination, Figure 3.4 provides a detailed
one-dimensional profile of the predicted solutions at ξ = π/2, enabling a clear and direct comparison.
Moreover, Figure 3.4 shows the highly accurate approximations obtained through both the L1 and L2

training approaches. However, the conventional PINN method falls short in capturing the sharp transition
near the boundary layer.

As an illustrative example, we utilize our SL-PINN method to tackle a complex solution profile:

(3.17) uε = −A(x)(y +
√

1− x2)(1− e
−2A(x)

√
1−x2

ε ) + 2A(x)(
√
1− x2)(1− e

−A(x)(y+
√

1−x2)
ε )

In this specific case, the corresponding forcing term can be obtained through direct computation. Due to
the presence of multiple humps in the exact solution, the numerical solution displays oscillatory profiles,
as depicted in Figure 3.5. However, our SL-PINN method effectively captures both the solution profile
and the sharp transition near the boundary layer. We have excluded the numerical experiments with the
conventional PINN approach since it consistently fails to produce an accurate solution profile.

3.2. Time-depedent problem. We extend our approach to a time dependent problem

Lεu
ε : uεt − ε∆uε − uεy = f, for (x, y) ∈ Ω, t ∈ (0, T ),

uε(x, y, t) = 0, for (x, y) ∈ ∂Ω, t ∈ (0, T ),

uε(x, y, 0) = 0, for (x, y) ∈ Ω, at t = 0.

(3.18)
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(a) True solution (b) SL-PINN using L2 training

(c) SL-PINN using L1 training (d) Conventional PINN

Fig. 3.3: Numerical prediction of (3.1) with ε = 10−6 and f = 1 (non-compatible case). For our simulations,
we select a uniform grid of 50 discretized points in each of the r and ξ directions.

We employ polar coordinates, expressed as x = r cos ξ and y = r sin ξ, in order to facilitate the development
of the boundary layer analysis. By introducing the transformation uε(x, y, t) = vε(r, ξ, t), we obtain that

Pεv
ε = vεt +

1

r2
(−ε(vεξξ + rvεr + r2vεrr)− r2(sin ξ)vεr − r(cos ξ)vεξ) = f, in (r, ξ) ∈ D, t ∈ (0, T ),

vε(1, ξ, t) = 0, at 0 ≤ ξ ≤ 2π, t ∈ (0, T ),

vε(r, ξ, 0) = 0, in (r, ξ) ∈ D.

(3.19)

As stated in the boundary layer analysis conducted by [13], the sharp transition occurs solely in the
spatial direction. Consequently, the solution does not exhibit a boundary layer in the temporal direction.
Therefore, the time-independent problem yields the same form of the corrector equation as in the case
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Fig. 3.4: True vs Predicted solution at ξ = 0.5π

(a) True solution (b) SL-PINN using L2 training

Fig. 3.5: Numerical prediction of (3.1) with ε = 10−6 and f specified in (3.17). For our simulations, we
select a uniform grid of 50 discretized points in each of the r and ξ directions.

without time dependence. Hence, we can derive the corrector equation as described [13]: For each t > 0,

−εφ0
rr − (sin ξ)φ0

r = 0, for (r, ξ) ∈ D

φ0 = −v0(cos ξ, sin ξ), for (r, ξ) ∈ Γ−,

φ0 → 0 as r → 0.

(3.20)
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Hence, we are able to find an explicit solution to the correction equation:

(3.21) φ0 = −v0(t, cos ξ, sin ξ) exp
(
sin ξ

ε
(1− r)

)
χ[π,2π](ξ),

where χ stands for the characteristic function. For our numerical scheme, we introduce an approximate
form,

(3.22) φ̄0 = exp

(
sin ξ

ε
(1− r)

)
χπ,2π(ξ)δ(r),

where δ(r) is a smooth cut-off function such that δ(r) = 1 for r ∈ [3/4, 1] and = 0 for r ∈ [0, 1/2]. We
establish the SL-PINN based on boundary layer analysis, incorporating the profile of the corrector such
that

(3.23) ṽ(t, r, ξ; θ) = (et − 1)
(
v̂(t, r, ξ,θ)− v̂(t, 1, ξ,θ)φ̄0(r, ξ)

)
C(r, ξ),

where C(r, ξ) is given by

C(r, ξ) =

{
1− r3, if 0 ≤ ξ ≤ π

1− r3 − (r sin ξ)3, if π < ξ < 2π,
(3.24)

and v̂(t, r, ξ,θ) = û(t, x, y,θ) =W4σ(W1x+W2y +W3t+ b). Then, the residual loss is defined by

Loss =
1

N

N∑
i=0

∥Pεṽ((ti, ri, ξi,θ))− f∥p for (ti, ri, ξi) ∈ [0, T ]×D,(3.25)

where p = 1, 2. Due to the boundary layer behavior near the lower semi-circle, we split the residual loss
(3.25) into two sections: 0 ≤ ξ ≤ π and π ≤ ξ ≤ 2π. For the 0 ≤ ξ ≤ π, calculating the residual loss is
simple:

Pεṽ((t, r, ξ,θ))− f

= (etv̂ + (et − 1)v̂t(t, r, ξ,θ))(1− r3) + (et − 1)(−ε( 1
r2

− r)v̂ξξ(t, r, ξ,θ)

+ (r2 − 1

r
) cos(ξ)v̂ξ(t, r, ξ,θ)− ε(1− r3)v̂rr(t, r, ξ,θ) + (6ε+ εr2 − ε

r
− sin(ξ)(1− r3))v̂r(t, r, ξ,θ)

+ (3ε+
6ε

r
+ 3r2 sin(ξ))v̂(t, r, ξ,θ))− f for 0 < r ≤ 1, 0 ≤ ξ ≤ π, 0 ≤ t ≤ T,

(3.26)

where 0 < r ≤ 1 and 0 ≤ ξ ≤ π. Introducing the boundary layer element in equation (3.23) and adding the
regularizing term in equation (3.24) makes the residual loss calculation more complex when ξ ranges from
π to 2π such that
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Pεṽ((t, r, ξ,θ))− f

= (etv̂(t, r, ξ,θ) + (et − 1)v̂t − (etv̂(t, 1, ξ,θ) + (et − 1)v̂(t, 1, ξ,θ)t)

exp

(
sin ξ

ε
(1− r)

)
)(1− r3 − r3 sin3(ξ) + (et − 1)(−ε( 1

r2
− r − r sin3(ξ))v̂ξξ(t, r, ξ,θ)

+ (6εr sin2(ξ) cos(ξ) + (r2 − 1

r
+ r2 sin3(ξ)) cos(ξ))v̂ξ(t, r, ξ,θ)− ε(1− r3 − r3 sin3(ξ))v̂rr(t, r, ξ,θ)

+ (6ε+ εr2 − ε

r
+ 7εr2 sin3(ξ) + r3 sin3(ξ)− (1− r3) sin(ξ))v̂r(t, r, ξ,θ)

+ (3ε+
6ε

r
+ 6εr sin(ξ) + +6r2 sin(ξ))v̂(t, r, ξ,θ)

+ v̂(t, 1, ξ,θ)
[
ε(C(r, ξ)δrr + (rC(r, ξ) + 2Cr(r, ξ))δr + (rCr(r, ξ) + Crr)(r, ξ)δ)

+ C(r, ξ) sin(ξ)δr − Cr(r, ξ) sin(ξ)δ
]
exp

(
sin ξ

ε
(1− r)

)
+

δ

r2
[
(εv̂ξξ(t, 1, ξ,θ) + (2− r) cos(ξ)v̂ξ(t, 1, ξ,θ)

− (1− r) sin(ξ)v̂(t, 1, ξ,θ))C(r, ξ) + (2εv̂ξ(t, 1, ξ,θ) + (2− r) cos(ξ)v̂(t, 1, ξ,θ))Cξ(r, ξ)

+ εv̂(t, 1, ξ,θ)Cξξ(r, ξ)
]
exp

(
sin ξ

ε
(1− r)

)
)

+ (et − 1)C(r, ξ)v̂(t, 1, ξ,θ)
δ(r)

r2
(
(1− r) cos2(ξ)

ε
) exp

(
sin ξ

ε
(1− r)

)
)− f,

(3.27)

where 0 < r ≤ 1, π < ξ < 2π, 0 ≤ t ≤ T . We make computation feasible in equation (3.27) by extracting
the largest order term in ε, which includes O(ε−1) such that

(3.28) ψ(t, r, ξ,θ) = (et − 1)(1− r3 − (r sin(ξ)3)v̂(t, 1, ξ,θ)
δ(r)

r2
(
1− r

ε
cos2 ξ) exp

(
sin ξ

ε
(1− r)

)
.

By the triangular inequality, we deduce that

(3.29) Loss ≤ 1

N

N∑
i=0

|ψ(ti, ri, ξi,θ)|+
1

N

N∑
i=0

|Pεṽ((ti, ri, ξi,θ))− ψ(ti, ri, ξi,θ)− f |,

The rightmost term does not include a large order term, εα where α < 0, because ψ already accounts for
the large terms such as ε−1. Therefore, conventional L1 or L2 loss can be used to compute this part. As
ψ contains O(ε−1), we employ L1-loss to handle ψ. Specifically, we choose a sufficiently large number of
sampling points N to derive

1

N

N∑
i=0

|ψ(ti, ri, ξi,θ)| ≈
1

Tπ

∫ T

0

∫ 2π

π

∫ 1

0

|ψ(t, r, ξ,θ)|drdξdt.(3.30)

By employing calculations similar to those presented in equations (3.13) to (3.15), we can deduce the
following result:

1

Tπ

∫ T

0

∫ 2π

π

∫ 1

0

|ψ(t, r, ξ,θ)|drdξdt ≤ K

2
+Kεe−

1
2ε −Kε.(3.31)

Thus, in (3.29), we focus on minimizing the rightmost term, as the first term on the right-hand side of
(3.29) becomes nearly constant by (3.31) when ε is sufficiently small. This simplification enables feasible
computations in our analysis.
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The effectiveness of our new approach is demonstrated through a series of numerical experiments, as
shown in Figure 3.6. For these experiments, we employ a grid discretization consisting of 50 uniformly
spaced grid points in each direction of ξ, r, and t. The function f used in these experiments satisfies the
compatibility condition mentioned in [13]:

(3.32) f = (1− x2)2t+ (1− x2)2(−y +
√
1− x2 +

ε(y +
√
1− x2)

(1− x2)3/2
) +O(ε).

Also, the corresponding u is given by

u(t, x, y) =

{
t(1− x2)2(−y +

√
1− x2 + ε (y+

√
1−x2)

(1−x2)3/2
, in D

0, on ∂D.
(3.33)

Figure 3.6 presents the numerical solution obtained using SL-PINN with ε = 10−6. In contrast, the
conventional PINNs are not included in the figure due to their significant deviation from the true solution.
The SL-PINN, enhanced with the corrector function, consistently produces stable and accurate approximate
solutions, irrespective of the small parameter ε. Figure 3.6 (C) depicts the one-dimensional predicted
solution profiles at ξ = π/2 for various time instances, including t = 0.25, 0.5, 0.75, and 1.0, alongside the
true solution. This example serves as evidence that our SL-PINN method delivers accurate predictions
throughout the entire time span.

(a) True soltuion at t=1 (b) SL-PINN at t=1 (c) 1D solution profiles

Fig. 3.6: Numerical prediction of (3.18) with ε = 10−6 and f specified in (3.32). For our simulations,
we select a uniform grid of 50 discretized points in each of the r and ξ directions. In the panel (c), the
one-dimensional predicted solution profiles are displayed at ξ = π/2 for various time instances, including
t = 0.25, 0.5, 0.75, and 1.0.

4. Convection-diffusion equations on a elliptical domain. We explore the convection-diffusion
equations on an elliptical domain, which represents a natural yet non-trivial extension of the problem:

Lεu
ε:=− ε∆uε − uεy = f, in Ω =

{
(x, y)| x2

(Rx)2
+

y2

(Ry)2
< 1

}
uε = 0, at ∂Ω.

(4.1)

Within the elliptical domain, we utilize the elliptic coordinate system [4] and examine two separate sce-
narios; i) Rx > Ry; ii) Rx < Ry.
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4.1. Major Axis Parallel to x-Axis. To start, we define the elliptic coordinates as (r, ξ) such that

x = a cosh r cos ξ, y = a sinh r sin ξ,(4.2)

where r > 0 and ξ ∈ [0, 2π]. By setting uε(x, y) = vε(r, ξ) with

a coshR = Rx, a sinhR = Ry,

we transform (4.1) into the following form

Pεv
ε:=− ε(vεrr + vεξξ)− (a cosh r sin ξ)vεr − (a sinh r cos ξ)vεξ = Hf in D = [0, R)× [0, 2π]

vε(R, ξ) = 0 at 0 ≤ ξ ≤ 2π,
(4.3)

where H = (a sinh r cos ξ)2 + (a cosh r sin ξ)2. To derive the corrector equation of φ, we use the following
stretching variable,

r =
R− r

εα
.(4.4)

We then obtain the corrector equation with α = 1, which is the thickness of the boundary layer,

−φ0
rr+

(
a

(
eR−εr + eεr−R

2

)
sin ξ

)
φ0
r = 0.(4.5)

Instead of seeking an explicit solution for the corrector equation, we employ the Taylor series expansion
for computational convenience to obtain a solution profile for (4.5),

−φ0
rr+

(
a

(
eR + e−R

2
+ ε

(
e−R − eR

2

)
r +

ε2

2!

(
eR + e−R

2

)
r2 + ..

)
sin ξ

)
φ0
r = 0.(4.6)

By identifying the dominant terms in equation (4.6), we derive the approximate corrector equations,

−φ0
rr +

(
a

(
eR + e−R

2

)
sin ξ

)
φ0
r = 0,

φ0 = −v0 at r = 0.

(4.7)

where v0(r, ξ) = u0(x, y). An explicit solution can be calculated as

(4.8) φ̄0(r, ξ) = −v0(R, ξ)e(R
x sin ξ)r.

For our numerical scheme, we introduce an approximate form,

(4.9) φ̄0 = exp

(
Rx(R− r) sin ξ

ε

)
χ(π,2π)δ(r).

With (4.8), we now introduce our SL-PINN of the form,

(4.10) ṽ(r, ξ; θ) =
(
v̂(r, ξ,θ)− v̂(R, ξ,θ)φ̄0(r, ξ)

)
C(r, ξ),

where C(r, ξ) is the regularizing term given by

C(r, ξ) =

{
1−

(
r
R

)3
, if 0 ≤ ξ ≤ π

1−
(
r
R

)3 − (
r
R sin ξ

)3
, if π < ξ < 2π.

(4.11)
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Then, the residual loss is defined by

Loss =
1

N

N∑
i=0

∥Pεṽ((ri, ξi,θ))− f∥p for (ri, ξi) ∈ D,(4.12)

where p = 1, 2. To account for the boundary layer behavior occurring near the boundary where π ≤ ξ ≤ 2π,
we divide the residual loss (4.12) into two sections: 0 ≤ ξ ≤ π and π ≤ ξ ≤ 2π. Calculating the residual
loss is straightforward for the range of 0 ≤ ξ ≤ π:

Pεṽ((r, ξ,θ))− f

= −ε(v̂rr(r, ξ,θ)(1− (
r

R
)3) + 2v̂r(r, ξ,θ)(−3

r2

R3
) + v̂(r, ξ,θ)(−6

r

R3
) + v̂ξξ(r, ξ,θ)(1− (

r

R
)3))

− (a cosh r sin ξ)(v̂r(r, ξ,θ)(1− (
r

R
)3) + v̂(r, ξ,θ)(−3

r2

R3
))

− (a sinh r cos ξ)v̂ξ(r, ξ,θ)(1− (
r

R
)3)− f

for 0 < r ≤ R , 0 ≤ ξ ≤ π.

(4.13)

However, when considering π ≤ ξ ≤ 2π, incorporating the boundary layer element in (4.10) and including
the regularizing term in (4.11) result in a more intricate form of the residual loss, as shown below:

Pεṽ((r, ξ,θ))− f =

− ε(v̂rr(r, ξ,θ)C + 2v̂r(r, ξ,θ)Cr + v̂(r, ξ,θ)Crr + v̂ξξ(r, ξ,θ)C + 2v̂ξ(r, ξ,θ)Cξ + v̂(r, ξ,θ)Cξξ)

− (a cosh r sin ξ)(v̂r(r, ξ,θ)C + v̂(r, ξ,θ)Cr)− (a sinh r cos ξ)(v̂ξC + v̂(r, ξ,θ)Cξ)

+ εv̂(R, ξ,θ)[δrrC + 2δrCr + δCrr] exp

(
Rx sin ξ

ε
(R− r)

)
− v̂(R, ξ,θ)[2Rx sin ξδrC + 2Rx sin ξδCr] exp

(
Rx sin ξ

ε
(R− r)

)
+ a(cosh r sin ξ)v̂(R, ξ,θ)[δrC + δCr] exp

(
Rx sin ξ

ε
(R− r)

)
+ εδ[v̂ξξ(r, ξ,θ)C + 2v̂ξ(r, ξ,θ)Cξ + v̂(r, ξ,θ)Cξξ] exp

(
Rx sin ξ

ε
(R− r)

)
− δ[Rx(R− r)((sin ξv̂(r, ξ,θ)− 2 cos ξv̂ξ(r, ξ,θ))C − 2(cos ξv̂(r, ξ,θ))Cξ] exp

(
Rx sin ξ

ε
(R− r)

)
+
v̂(R, ξ,θ)

ε
δC[(Rx sin ξ)2 − a cosh r sin2 ξRx+

(Rx(R− r) cos ξ)2 + a sinh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

)
− f

for 0 < r ≤ R , π ≤ ξ ≤ 2π

(4.14)

As in the circular domain, calculating the residual loss in (4.14) involves a substantial term that can
misguide our loss optimization process. In order to make the computation in equation (4.14) feasible, we
extract the dominant term in ε, specifically the term of O(ε−1). This allows us to derive

ψ(r, ξ,θ) :=
v̂(R, ξ,θ)

ε
δ(r)(1− (

r

R
)3 − (

r

R
sin ξ)3)[(Rx sin ξ)2 − a cosh r sin2 ξRx

+(Rx(R− r) cos ξ)2 + a sinh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

)
.

(4.15)
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By the triangular inequality, the loss in (4.12) bounds

(4.16) Loss ≤ 1

N

N∑
i=0

|ψ(ri, ξi,θ)|+
1

N

N∑
i=0

|Pεṽ((ri, ξi,θ))− ψ(ri, ξi,θ)− f |,

The rightmost term does not involve a high-order term, such as εα where α < 0, as ψ already contains
large terms like ε−1. Therefore, this part can be computed using a conventional L1 or L2 loss. Considering
that ψ contains terms of O(ε−1), we utilize an L1 loss for handling ψ. To ensure accuracy, we select a
sufficiently large number of sampling points, denoted as N :

1

N

N∑
i=0

|ψ(ri, ξi,θ)| ≈
1

Rπ

∫ 2π

π

∫ R

0

|ψ(r, ξ,θ)|drdξ

=
1

Rπ

∫ 2π

π

∫ R

0

∣∣∣ v̂(R, ξ,θ)
ε

δ(r)(1− (
r

R
)3 − (

r

R
sin ξ)3)[(Rx sin ξ)2 − a cosh r sin2 ξRx

+ (Rx(R− r) cos ξ)2 + a sinh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

) ∣∣∣drdξ
≤ 2

Rπ

∫ 2π

π

∫ R

0

∣∣∣ v̂(R, ξ,θ)
ε

δ(r)[(Rx sin ξ)2 − a cosh r sin2 ξRx

+ (Rx(R− r) cos ξ)2 + a sinh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

) ∣∣∣drdξ.

(4.17)

Note that, δ(r) is a smooth cut-off function such that δ(r) = 1 for r ∈ [3R/4, R] and = 0 for r ∈ [0, R/2].

1

Rπ

∫ 2π

π

∫ R

0

|ψ(r, ξ,θ)|drdξ ≤ K

ε

∫ 2π

π

∫ R

R
2

|[(Rx sin ξ)2 − a cosh r sin2 ξRx

+ (Rx(R− r) cos ξ)2 + a sinh r cos2 ξRx(R− r)]| exp
(
Rx sin ξ

ε
(R− r)

)
drdξ

≤ K

ε

∫ 2π

π

∫ R

R
2

[(−R2
x sin ξ)− a coshR sin ξRx

+ (Rx(R− r))2| cos ξ|+ a sinh r| cos ξ|Rx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

)
drdξ

≤ K

ε

∫ 2π

π

ε(Rx + a coshR)
[
e

Rx sin ξ(R−r)
ε

]r=R

r=R
2

dξ

+ 2
K

ε

∫ R

R
2

ε(Rx(R− r) + a sinh r)
[
e

Rx sin ξ(R−r)
ε

]ξ=2π

ξ= 3π
2

dr

≤ Kπ(Rx + a coshR)(1− e−RxR/2ε) +
1

4
KRxR2 + 2Ka(coshR− cosh(R/2)).

(4.18)

Thus, in (4.16), we focus on minimizing the rightmost term, as the first term on the right-hand side of
(4.16) becomes nearly constant by (4.18) when ε is sufficiently small. This simplification enables feasible
computations in our analysis.

The effectiveness of our new approach is demonstrated through a series of numerical experiments
presented in Figures (4.1) and (4.2). In these experiments, we utilize a grid discretization consisting of 50
uniformly spaced points in both the ξ and r directions. Similar to the circular domain, when f does not
vanish at the characteristic points (±4, 0) the function f(x, y) becomes incompatible due to the appearance
of singularities in its derivatives at these points. To maintain simplicity in this paper, we focus on the first
compatibility condition. We compare the performance of the standard five-layer PINN approximation with
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(a) True solution (b) SL-PINN using L2 training

(c) SL-PINN using L1 training (d) Conventional PINN

Fig. 4.1: Numerical prediction of (4.1) with (Rx, Ry) = (4, 1) and ε = 10−6 when f = (1− (x/Rx)2)2/Ry.
For our simulations, we select a uniform grid of 50 discretized points in each of the r and ξ directions.

our SL-PINN approximation. Figure 4.1 showcases the numerical solutions of (4.1) with (Rx, Ry) = (4, 1)
and ε = 10−6 when f = (1− (x/Rx)2)2/Ry. Figure 4.1 provides a clear illustration of the conventional
PINN method’s failure in accurately approximating the solution to the singular perturbation problem.
In contrast, our new scheme exhibits significant superiority over the conventional PINN method. The
numerical results presented in Figure 4.1 and Table 1 provide compelling evidence of the substantial
performance improvement achieved by our SL-PINN approach. Our semi-analytic SL-PINN, enriched with
the corrector, consistently produces stable and accurate approximate solutions regardless of the small
parameter ε. Figure 4.2 offers a closer examination of the one-dimensional profile of predicted solutions at
ξ = π/2, facilitating a clear and direct comparison. Figure 4.2 vividly demonstrates the high accuracy of
both the L1 and L2 training approaches in generating approximations. However, the conventional PINN
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Fig. 4.2: The one-dimensional profile of predicted solutions in Figure 4.1 along the line ξ = π/2.

method falls short in capturing the sharp transition near the boundary layer.

4.2. Major Axis Parallel to y-Axis. We now define the elliptic coordinates as (r, ξ) such that

x = a sinh r cos ξ, y = a cosh r sin ξ,(4.19)

where r > 0 and ξ ∈ [0, 2π]. Setting uε(x, y) = vε(r, ξ) and a sinhR = Rx, and a coshR = Ry, we transform
(4.1) into the following form

Pεv
ε := −ε(vεrr + vεξξ)− (a sinh r sin ξ)vεr − (a cosh r cos ξ)vεξ = Hf in D = [0, R)× [0, 2π]

vε(R, ξ) = 0 at 0 ≤ ξ ≤ 2π,
(4.20)

where H = (a sinh r sin ξ)2 + (a cosh r cos ξ)2. To derive the corrector equation of φ, we make use of the
following stretching variable,

r =
R− r

εα
.(4.21)

We then obtain the corrector equation with α = 1, which is the thickness of the boundary layer,

−φ0
rr+

(
a

(
eR−εr − eεr−R

2

)
sin ξ

)
φ0
r = 0.(4.22)

To find an explicit solution for the corrector, we simplify (4.22) by applying the Taylor series expansion,

−φ0
rr+

(
a

(
eR − e−R

2
− ε

(
e−R + eR

2

)
r +

ε2

2!

(
eR − e−R

2

)
r2 − ..

)
sin ξ

)
φ0
r = 0.(4.23)

By identifying the dominant terms in equation (4.23), we derive the approximate corrector equations,

−φ0
rr +

(
a

(
eR − e−R

2

)
sin ξ

)
φ0
r = 0

φ0 = −v0 at r = 0,

(4.24)

where v0(r, ξ) = u0(x, y). An explicit solution can be calculated as

(4.25) φ̄0(r, ξ) = −v0(R, ξ)e(R
x sin ξ)r.
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For our numerical scheme, we introduce an approximate form,

(4.26) φ̄0 = exp

(
Rx(R− r) sin ξ

ε

)
χ(π,2π)δ(r).

With (4.25), we now introduce our SL-PINN of the form,

(4.27) ṽ(r, ξ; θ) =
(
v̂(r, ξ,θ)− v̂(R, ξ,θ)φ̄0

)
C(r, ξ),

where C(r, ξ) is the boundary regularizing term given by

C(r, ξ) =

{
1− ( r

R )3, if 0 ≤ ξ ≤ π,

1− ( r
R )3 − ( r

R sin ξ)3, if π < ξ < 2π.
(4.28)

Then, the residual loss is defined by

Loss =
1

N

N∑
i=0

∥Pεṽ((ri, ξi,θ))− f∥p for (ri, ξi) ∈ D,(4.29)

where p = 1, 2. Considering the boundary layer behavior near π ≤ ξ ≤ 2π, we split the residual loss (4.29)
into two sections: 0 ≤ ξ ≤ π and π ≤ ξ ≤ 2π. The residual loss calculation for 0 ≤ ξ ≤ π is relatively
simple:

Pεṽ((r, ξ,θ))− f =

− ε(v̂rr(r, ξ,θ)(1− (
r

R
)3) + 2v̂r(r, ξ,θ)(−3

r2

R3
) + v̂(r, ξ,θ)(−6

r

R3
) + v̂ξξ(r, ξ,θ)(1− (

r

R
)3))

− (a sinh r sin ξ)(v̂r(r, ξ,θ)(1− (
r

R
)3) + v̂(r, ξ,θ)(−3

r2

R3
))

− (a cosh r cos ξ)v̂ξ(r, ξ,θ)(1− (
r

R
)3)− f,

(4.30)

for 0 < r ≤ R , 0 ≤ ξ ≤ π. However, when considering π ≤ ξ ≤ 2π, incorporating the boundary layer
element in (4.27) and including the regularizing term in (4.28) result in a more intricate form of the residual
loss, as shown below:

Pεṽ((r, ξ,θ))− f =

− ε(v̂rr(r, ξ,θ)C + 2v̂r(r, ξ,θ)Cr + v̂(r, ξ,θ)Crr + v̂ξξ(r, ξ,θ)C + 2v̂ξ(r, ξ,θ)Cξ + v̂(r, ξ,θ)Cξξ)

− (a sinh r sin ξ)(v̂r(r, ξ,θ)C + v̂(r, ξ,θ)Cr)− (a cosh r cos ξ)(v̂ξ(r, ξ,θ)C + v̂(r, ξ,θ)Cξ)

+ εv̂(R, ξ,θ)[δrrC + 2δrCr + δCrr] exp

(
Rx sin ξ

ε
(R− r)

)
− v̂(R, ξ,θ)[2Rx sin ξδrC + 2Rx sin ξδCr] exp

(
Rx sin ξ

ε
(R− r)

)
+ a(cosh r sin ξ)v̂(R, ξ,θ)[δrC + δCr] exp

(
Rx sin ξ

ε
(R− r)

)
+ εδ[v̂ξξ(r, ξ,θ)C + 2v̂ξ(r, ξ,θ)Cξ + v̂(r, ξ,θ)Cξξ] exp

(
Rx sin ξ

ε
(R− r)

)
− δ[Rx(R− r)((sin ξv̂(r, ξ,θ)− 2 cos ξv̂ξ(r, ξ,θ))C − 2(cos ξv̂(r, ξ,θ))Cξ] exp

(
Rx sin ξ

ε
(R− r)

)
+
v̂(R, ξ,θ)

ε
δC[(Rx sin ξ)2 − a sinh r sin2 ξRx+

(Rx(R− r) cos ξ)2 + a cosh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

)
− f,

(4.31)
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for 0 < r ≤ R , π ≤ ξ ≤ 2π. Similar to the circular domain, the residual loss indicated in (4.14)
encompasses a substantial term that may potentially misdirect our loss optimization process. In order
to make the computation in (4.14) feasible, we extract the dominant term in ε, specifically the term of
O(ε−1). Hence, we define

ψ(r, ξ,θ) :=
v̂(R, ξ,θ)

ε
δ(r)(1− (

r

R
)3 − (

r

R
sin ξ)3)[(Rx sin ξ)2 − a sinh r sin2 ξRx

+(Rx(R− r) cos ξ)2 + a cosh r cos2 ξRx(R− r)] exp

(
Rx sin ξ

ε
(R− r)

)
.

(4.32)

By the triangular inequality, the loss in (4.29) bounds

(4.33) Loss ≤ 1

N

N∑
i=0

|ψ(ri, ξi,θ)|+
1

N

N∑
i=0

|Pεṽ((ri, ξi,θ))− ψ(ri, ξi,θ)− f |.

Since ψ absorbs large terms such as ε−1, the rightmost term does not involve high-order terms such as εα

where α < 0. Given that ψ includes terms of O(ε−1), we employ an L1 loss function for managing ψ:

1

N

N∑
i=0

|ψ(ri, ξi,θ)| ≈
1

Rπ

∫ 2π

π

∫ R

0

|ψ(r, ξ,θ)|drdξ,(4.34)

where N is the number of sampling points. By employing calculations similar to those presented in
equations (4.16) to (4.18), we can deduce the following result:

1

Rπ

∫ 2π

π

∫ R

0

|ψ(r, ξ,θ)|drdξ

≤ K

ε

∫ 2π

π

ε(Rx + a sinhR)
[
e

Rx sin ξ(R−r)
ε

]r=R

r=R
2

dξ

+ 2
K

ε

∫ R

R
2

ε(Rx(R− r) + a cosh r)
[
e

Rx sin ξ(R−r)
ε

]ξ=2π

ξ= 3π
2

dr

≤ Kπ(Rx + a sinhR)(1− e−RxR/2ε) +
1

4
KRxR2 + 2Ka(sinhR− cosh(R/2)).

(4.35)

Hence, in (4.33), we focus on minimizing the rightmost term, since the first term on the right-hand side of
(4.33) becomes nearly constant by (4.35) when ε is sufficiently small. This simplification enables feasible
computations in our computation. Figures (4.3) provide numerical evidence of the SL-PINN’s effective-
ness. For these experiments, we employed a grid comprising 50 uniformly spaced points in both the ξ and
r directions. We compare the standard five-layer PINN with our SL-PINN. Figure 4.3 shows the numerical
solutions of (4.1) with (Rx, Ry) = (1, 4) and ε = 10−6 when f = (1− (x/Rx)2)2/Ry. The figure under-
scores the traditional PINN’s inability to accurately approximate the solution to the singular perturbation
problem. In contrast, our novel approach demonstrates superior performance. Figure 4.4 offers a detailed
view of the one-dimensional profile of predicted solutions at ξ = π/2. This demonstrates the high accuracy
of both the L1 and L2 training approaches in predicting solutions. However, the traditional PINN method
falls short in capturing the sharp transition near the boundary layer.

5. Conclusion. In this study, we have introduced a semi-analytic approach to enhance the numerical
performance of PINNs in tackling a range of singularly perturbed boundary value problems and convection-
dominated equations on rectangular, circular, and elliptical domains. For each singular perturbation prob-
lem examined, we have derived an analytic approximation known as the corrector function, which captures
the behavior of the fast (stiff) component of the solution within the boundary layer. By integrating these
corrector functions into a 2-layer PINN framework with hard constraints, we successfully address the stiff-
ness inherent in the approximate solutions, resulting in our novel semi-analytic SL-PINNs enriched with
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(a) True solution (b) SL-PINN using L2 training

(c) SL-PINN using L1 training (d) Conventional PINN

Fig. 4.3: Numerical prediction of (4.1) with (Rx, Ry) = (1, 4) and ε = 10−6 when f = (1− (x/Rx)2)2/Ry.
For our simulations, we select a uniform grid of 50 discretized points in each of the r and ξ directions.

the correctors. Through the incorporation of these corrector functions, we effectively overcome the stiffness
challenge associated with approximate solutions, leading to the development of our improved SL-PINNs.
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