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Abstract
This study explores the numerical approxima-
tion of two-dimensional convection-dominated
singularly perturbed problems within a paramet-
ric domain. These types of boundary value prob-
lems pose significant challenges due to the pres-
ence of sharp boundary layers within their solu-
tions. Traditional numerical methods often fail
to effectively capture sharp singular layers, or
they incur prohibitively high costs. Recently,
various methods have been attempted, including
those SL-PINN(G.-M. Gie & Munkhjin, 2024; T.-
Y. Chang & Jung, 2024; G.-M. Gie & Jung, 2024),
which have shown promise in addressing these
issues. However, these methods are limited to
orthogonal coordinate systems and primarily ana-
lyze conformal transformations. We introduce a
Non-Conformal Transformation Corrector, NCT-
Corrector incorporated with SL-PINN methodol-
ogy for broader analysis. The NCT-PINN method
effectively predicts solutions for problems with
sharp transitions in complex domains that are dif-
ficult for conventional methods to handle.

1. Introduction
The use of neural networks for approximating solutions
to differential equations has gained significant attention in
research (Jin et al., 2021).

Various unsupervised neural network methods have been
developed within this domain, including physics-informed
neural networks (PINNs) (Lu et al., 2021), the deep Ritz
method (DRM) (Yu et al., 2018), and the Galerkin Neural
Network (GNN) (Ainsworth & Dong, 2022).

PINNs, in particular, utilize collocation points in the space-
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time domain as inputs, making them well-suited for solv-
ing complex, time-dependent, multi-dimensional equations
with intricate domain geometries. However, PINNs exhibit
limitations in accurately capturing complex and highly non-
linear flow patterns such as turbulence, vortical structures,
and boundary layers (Fernández de la Mata et al., 2023;
Bararnia & Esmaeilpour, 2022; Gomes et al., 2022; Han &
Lee, 2023).

In this paper, we introduce the boundary layer problem,
which poses a significant challenge for PINNs. We propose
a method to resolve this issue by enhancing performance
through the incorporation of a semi-analytic approach into
the PINN framework.

Our focus is on two-dimensional convection-diffusion equa-
tions in parametric regions denoted by Ω:

Lϵu
ϵ := −ϵ∆uϵ − uϵ

y = f, in Ω,

uϵ = 0, at ∂Ω.

We construct a two-layer neural network similar to PINNs,
emphasizing hard constraints for boundary conditions:

u(x, y; θ) = g(x, y)û(x, y; θ),

where û is defined by a two-layer neural network, with
g(x, y) = 0 on ∂Ω:

û(x, y; θ) =

n∑
j=1

cjσ(w1jx+ w2jy + bj),

using logistic sigmoid activation σ(z) = 1
1+e−z . This sim-

plified structure allows calculating the loss function using
explicit derivatives of û, avoiding computational errors with
boundary layers. Our approach is cost-effective and accu-
rate, with potential extension to multi-layer networks using
symbolic computation. While traditional PINNs use multi-
layer architectures, our SL-PINNs use a two-layer structure
but achieve superior performance.
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Figure 1. The boundary-fitted coordinates D∗ (left) and the parametric region D (right) with the generalized coordinate transformations
without orthogonal coordinate system.

2. Boundary Layer Analysis
2.1. Parametrization

Our aim in this article is to study singularly perturbed prob-
lems of the form{

Lεu
ε := −ε∆uε − uε

y = f(x, y) in D,

uε = 0 on ∂D,
(1)

where 0 < ε ≪ 1.
We denote the upper and lower halves of the domain by
Cu(x) =

√
1− x2 − 2x2 . The limit problem (i.e., when

ε = 0) is defined by{
−u0

y = f(x, y) in D,

u0 = 0 on Γu,
(2)

where Γu = {(x, y) | x2 + y2 = 1, y > 0}. The explicit
solution of equation (2) is

u0(x, y) =

∫ Cu(x)

y

f(x, s)ds, (x, y) ∈ D. (3)

Before proceeding, we introduce the formal asymptotic ex-
pansion of uε, uε ∼

∑∞
j=0 ε

juj , also known as the outer
expansion in boundary layer theory. This expansion leads to

{
−uj

y = ∆uj−1 in D,

uj = 0 on Γu.
(4)

In our analysis, we assume that the following conditions
hold:

∂p1+p2f

∂xp1∂yp2
= 0 at (±1,−2) for 0 ≤ 2p1 + p2 ≤ 2 + 3n,

(5)

for p1, p2 ≥ 0.For experiments and examples, the second
compatibility condition, as listed below, was used:

∂p1+p2f

∂xp1∂yp2
= 0 at (±1,−2)for 0 ≤ 2p1 + p2 ≤ 2.

(6)

2.2. Non-Conformal Corrector

We introduce a non-conformal corrector θ0 to adjust bound-
ary values at critical points, deriving equations and estab-
lishing solutions using analytical and numerical methods.
Full error analysis and further lemmas ensure the robustness
of our results, aiming to approximate solutions efficiently
and accurately. Considering the stretched variable r̃ = r

ϵ
we identify the dominating differential operators and we are
led to the following equation for the first corrector θ0:

∂2θ0

∂r̃2
+

H ′

S
(ξ) sin ξ

∂θ0

∂r̃
= 0

for 0 < r̃ < ∞, π < ξ < 2π,

θ0 = −u0(cos ξ, (sin ξ − cos 2ξ − 1))

at r̃ = 0,

θ0 → 0 as r̃ → ∞.

(7)

Hence we are able to obtain an explicit solution:

θ0 = −u0(cos ξ, (sin ξ − cos 2ξ − 1)) exp

(
W sin ξr

ϵ

)
χ[π,2π)(ξ),

(8)

We define χA as the characteristic function of the set A.
Additionally, let

W = −H ′

S
,

where H ′ and S are previously defined functions, and W
belongs to C∞([0, 2π]).
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Figure 2. Schematic diagram of SL-PINN structure. The model utilize only a single layer consisting of trainable parameters. The training
objective is incorporated by a single-layer prediction and the correction scheme with appropriate changes of variables.

Using a cut-off function we write an approximate form of
θ0:

θ̄0 = −u0(x(ξ), y(ξ)) exp

(
W sin ξr

ϵ

)
δ(r)χ[0,π)(ξ),

(9)

where δ(r) is a smooth cut-off function such that δ(r) = 1
for ξ ∈ [0, R/4] and = 0 for ξ ∈ [R/2, R].

we simply use
Bx(ξ) = cos ξ (10)

By(ξ) = sin ξ − cos 2ξ − 1 (11)

θ̄0 = −u0(Bx(ξ), By(ξ)) exp

(
W sin ξr

ϵ

)
δ(r)χ[0,π)(ξ),

(12)

Since θ0 vanishes like u0 at ξ = π, 2π, θ0 is continuous
and piecewise smooth on D, and thus we conclude that
θ0, θ̄0 ∈ H1(D). We note here that

u0(Bx(ξ), By(ξ)) =

∫ By(−ξ)

By(ξ)

f(Bx(ξ), s) ds,

for π < ξ < 2π.

and
u0 + θ0 ∈ H1

0 (D). (13)

3. SL-PINN
To accurately capture the sharp, thin transition at the bound-
ary layer, a naive PINN with 5 or 6 layers is insufficient.
However, by incorporating the Corrector method, a single-
layer PINN (SL-PINN) can achieve high accuracy in captur-
ing this thin layer.

We make use of a straightforward neural network, û, multi-
plied by g(r, ξ) to satisfy the boundary condition as follows:

v̂(r, ξ; θ) = g(r, ξ) û(r, ξ; θ),

where û is defined by a two-layer neural network, with
g(r, ξ) = 0 on Γu.

We define the two-layer neural network as:

û(r, ξ; θ) =

n∑
j=1

cjσ(w1jr + w2jξ + bj),

where n is the number of neurons.

We now establish the semi-analytic SL-PINN method as
follows:

ṽ(r, ξ; θ) = (v̂(r, ξ; θ)− v̂(1, ξ; θ)φ̄0)C(r, ξ),
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Figure 3. The true solution profile, along with the predictions of the SL-PINN approach and the naive PINN, are presented in both a 3D
view (a) and a top-down view (b). This illustrates the profiles viewed from a three-dimensional perspective in (a) and from above in (b).

where C(r, ξ) is given by

C(r, ξ) =

{
1− r3, if 0 ≤ ξ ≤ π,

1− r3 − (r sin ξ)3, if π < ξ < 2π,
(14)

4. Results
On the solid ground of the analysis, we conducted exper-
iments to demonstrate the capability of our SL-PINN to
detect the dramatic stiffness on the generalized parametric
region. For the experiment, we utilize a single layer with
320 trainable parameters in the SL-PINN structure. The
plain PINN model has 3360 trainable parameters, which is
10 times more than our approach. We trained both models
for 500 epoch, and compared the predictive performance
of both models against the ground truth. We employed the
relative L2 norm and relative L-infinite norm as comparative
metrics to assess the disparity between the two models, as
these measures are well-suited for evaluating differences in
function.

Relative L2 norm =

√∫
D
(f(x)− g(x))2 dx√∫

D
f(x)2 dx

Relative L∞ norm =
supx∈D |f(x)− g(x)|

supx∈D |f(x)|

In the experiment, as shown in Figure 3, the two models
exhibited a stark contrast, with our model demonstrating a

Table 1. Comparison table of our model and naive PINN using
relative L2 norm and relative L∞

MODELS Relative L2 norm Relative L∞ norm

OURS 0.024 0.054
Plain PINN 1.143 1.884

proficient prediction of the solution’s stiffness in the bound-
ary layer. On the contrary, the plain PINN failed to capture
the stiffness at the boundary layer, attributed to the absence
of a complementary function that regulates abrupt stiffness
at the boundary

Conclusion
In this study, we present a semi-analytic method to improve
the numerical performance of Physics-Informed Neural
Networks (PINNs) in solving various singularly perturbed
boundary value problems and convection-dominated equa-
tions on parametric domains. For each examined singular
perturbation problem, we derive an analytic approximation,
called the corrector function, which captures the behavior of
the fast (stiff) component of the solution within the boundary
layer. By integrating these corrector functions into a 2-layer
PINN framework, we effectively manage the stiffness in
the approximate solutions, resulting in our semi-analytic
SL-PINNs enhanced with correctors. This incorporation of
corrector functions allows us to address the stiffness chal-
lenge in approximate solutions, leading to the development



NCT-Corrector: Non-Conformal Transformation Corrector for Convection-Dominated Boundary Layer Problems

of improved SL-PINNs.
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Gómez-Romero, J. Physics-informed neural networks
for data-driven simulation: Advantages, limitations, and
opportunities. Physica A: Statistical Mechanics and
its Applications, 610:128415, 2023. ISSN 0378-4371.
doi: https://doi.org/10.1016/j.physa.2022.128415.
URL https://www.sciencedirect.com/
science/article/pii/S0378437122009736.

G.-M. Gie, Y. Hong, C.-Y. J. and Munkhjin, T. Semi-
analytic pinn methods for boundary layer problems in
a rectangular domain. Journal of Computational and
Applied Mathematics, 2024.

G.-M. Gie, Y. H. and Jung, C.-Y. Semi-analytic pinn meth-
ods for singularly perturbed boundary value problems.
Applicable Analysis, 2024.

Gomes, A. T. A., da Silva, L. M., and Valentin, F. Physics-
aware neural networks for boundary layer linear problems,
2022.

Han, J. and Lee, Y. A neural network approach for
homogenization of multiscale problems. Multiscale
Modeling & Simulation, 21(2):716–734, 2023. doi:
10.1137/22M1500903. URL https://doi.org/10.
1137/22M1500903.

Jin, X., Cai, S., Li, H., and Karniadakis, G. E. Nsfnets
(navier-stokes flow nets): Physics-informed neural net-
works for the incompressible navier-stokes equations.
Journal of Computational Physics, 426:109951, 2021.

Jung, C.-Y. and Temam, R. Convection–diffusion equa-
tions in a circle: The compatible case. Journal de
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A. Lemma
We assume that

∂α+βf(x, y)

∂xα∂yβ
= 0 at (±1,−2), 0 ≤ 2α+ β ≤ γ − 1, γ ≥ 1, α, β ≥ 0, (15)

where f(x, y) belongs to Cγ(D), and D is the ellipse as in (1). Then the following function

f(x,Cu(x))

(C0(x))γ
(16)

is bounded for all x ∈ (−1, 1), where C0(x) =
√
1− x2.

Proof.

It suffices to show that f(x,Cu(x))
Cγ

0 (x)
is bounded (has a finite limit) as x → 1−, −1+. Since the case x = −1+ is similar, we

just consider the limit as x → 1−. To prove that limx→1−
f(x,Cu(x))

Cγ
0 (x)

is bounded, we proceed by induction on m, and use

L’Hôpital’s rule and the fact that C ′
0(x) = −xC−1

0 (x). For m = 1, we just observe that

lim
x→1−

f(x,Cu(x))

C0(x)
= lim

x→1−

fx(x,Cu(x)) + fy(x,Cu(x))(C
′
0(x)− 4x)

C ′
0(x)

= lim
x→1−

fy(x,Cu(x))

Assuming that the result holds for y ≤ k, k ≥ 1, we then verify the claim for y = k + 1 observing that

lim
x→1−

f(x,Cu(x))

Ck+1
0 (x)

= − lim
x→1−

(
fx(x,Cu(x))

(k + 1)xCk−1
0 (x)

+
fy(x,Cu(x))

(k + 1)Ck
0 (x)

+
4fy(x,Cu(x))

(k + 1)Ck−1
0 (x)

)

Since y is replaced by k + 1, we are assuming that f belongs to Ck(D) and satisfies 2.7 for 0 ≤ 2α+ β ≤ k − 1 and gx
belongs to Ck(D) and satisfies 2.7 for 0 ≤ 2α+ β ≤ k− 2. It follows from the induction assumption that each of the terms
in the right-hand side of 2.10 has a finite limit as x → 1−, and thus so does the term in the left-hand side. The lemma is
proved.

B. Lemma
There exists a positive constant k such that, for integers l, n, s ≥ 0,m = 0, 1, 2, and for 1 ≤ p ≤ ∞,∣∣∣∣(sin ξ)−l

(r
ε

)n ∂s+mθ0

∂rs∂ξm

∣∣∣∣
Lp(D∗)

≤ k sup
ξ

|a0,h(ξ)|ε
1
p−s, (17)

where h = −s+m+ l + n+ 1, and

a0,q(ξ) =
∑

m+h+r≤q
m,h,r≥0

cm,h,r
1

Wh sinm ξ

drv0(ξ)

dξr
, (18)

v0(ξ) = −u0(Bx(ξ), By(ξ)) and the cm,r = cm,r(ξ) ∈ C∞([0, 2π]), may be different at different occurrences, If q < 0,
then a0,q is simply in C∞([0, 2π]) fuction. The notation a0,q follows the same convention as outlined in the Notation
convection of (Jung & Temam, 2011).

Proof.

For integers s ≥ 0,m = 0, 1, 2, we obtain

∂s+mθ0
∂r̄s∂ξm

= ϵs
∂s+mθ0
∂rs∂ξm

= a0,−s+m(ξ)

m∑
k=0

((−W sin ξ)r̄)
k
exp ((W sin ξ)r̄)χ[π,2π](ξ) (19)
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Hence, we observe that

(sin ξ)−lr̄n
∂s+mθ0
∂rs∂ξm

= a0,−s+m(ξ)(sin ξ)−1−l−n
m∑

k=0

(− sin ξ) ((−W sin ξ)r̄)
k+n

ϵ−s exp ((W sin ξ)r̄)χ[π,2π](ξ), (20)

∣∣∣∣(sin ξ)−lr̄n
∂s+mθ0
∂rs∂ξm

∣∣∣∣
Lp(D∗)

(21)

=

∣∣∣∣∣a0,−s+m(ξ)(sin ξ)−1−l−n
m∑

k=0

(− sin ξ) ((−W sin ξ)r̄)
k+n

ϵ−s exp ((W sin ξ)r̄)

∣∣∣∣∣
Lp((0,R)×(π,2π))

(22)

≤ k

{
sup
ξ

|a0,−s+m+l+n+1(ξ)|

}(∫ 2π

π

∫ 1

0

|
m∑

k=0

((−W sin ξ)r̄)
k+n |p(− sin ξ)pϵ−ps exp ((pW sin ξ)r̄) drdξ

) 1
p

(23)

≤ k

{
sup
ξ

|a0,−s+m+l+n+1(ξ)|

}(∫ 2π

π

∫ 1

0

κ(− sin ξ)pϵ−ps exp ((pW sin ξ)r̄) drdξ

) 1
p

(24)

Note that

0 ≤
∫ 1

0

exp (cW(sin ξ)r̄) dr =

∫ 1

0

exp
(
cW(ξ)(sin ξ)

r

ϵ

)
dr =

ϵ

−cW(ξ) sin ξ

[
1− exp

(
cW sin ξ

ϵ

)]
. (25)

Since cW(ξ) sin ξ ≤ 0,

0 ≤
∫ 1

0

exp (c(W sin ξ)r̄) dr ≤ ϵ

−cW sin ξ
, (26)

Therefore,

0 ≤
∫ 2π

π

∫ 1

0

(− sin ξ)p exp (c(W sin ξ)r̄) drdξ ≤
∫ 2π

π

(− sin ξ)p
∫ 1

0

exp (c(W sin ξ)r̄) drdξ (27)

≤
∫ 2π

π

(− sin ξ)p
ϵ

−cW sin ξ
dξ ≤

∫ 2π

π

(− sin ξ)p−1 ϵ

cW
dξ, (28)

With κ :=
∫ 2π

π
(− sin ξ)p−1 1

cW dξ, ∫ 2π

π

∫ 1

0

(− sin ξ)p exp (c(W sin ξ)r̄) drdξ ≤ κϵ. (29)

Then, we obtain ∣∣∣∣(sin ξ)−l
(r
ε

)n ∂s+mθ0

∂rs∂ξm

∣∣∣∣
Lp(Ω∗)

≤ κ sup
ξ

|a0,−s+m+l+n+1(ξ)|ε
1
p−s (30)

C. Lemma
If q ≤ 1 or if the compatibility conditions hold for 2 + 3n ≥ −2 + q ≥ 0, then a0,q(ξ) is bounded for ξ ∈ [π, 2π].

Proof.

We aim to establish the general case for any non-negative integer r through induction. Specifically, we derive the following
recursive relation of the derivatives of v0(ξ).



NCT-Corrector: Non-Conformal Transformation Corrector for Convection-Dominated Boundary Layer Problems

And by using induction approch we got

drv0(ξ)

dξr
=
∑

l+s≤r
l,s≥0

cls(sin ξ)
2l−r+s ∂

l+su0

∂xl∂ys
(Bx(ξ), By(ξ)) +

∑
0≤r′≤r−1

cr′(sin ξ)
r′−r d

r′v0(ξ)

dξr′
(31)

holds,

To bound the second term on the right-hand side of (31), We use Lemma 2.2.1

∂lu0

∂xl
(x, y) =

∑
l′+s′≤l−1,l′,s′≥0

gl′ls′(x)
∂l′+s′f

∂xl′∂ys′
(x,Cu(x)) + cl

∫ Cu(x)

y

∂lf

∂xl
(x, s)ds, (32)

{
∂s

∂ys

[
∂lu0

∂xl

]}
(x, y) =

∑
l′+s′≤l−1,l′,s′≥0

gl′ls′s(x)
∂l′+s′f

∂xl′∂ys′
(x,Cu(x)) + cls

{
∂s−1

∂ys−1

[
∂lf

∂xl

]}
(x, y), (33)

where

∂−1f

∂y−1
(x, y) =

∫ Cu(x)

y

f(x, s) ds, and |gl′ls′s(x)| ≤ κCu(x)
−(−1+2l−2l′−s′). (34)

Then,we rewrite

1

(sin ξ)q−r

drv0

dξr
(ξ) =

∑
l+s≤r,l,s≥0

l′+s′≤l−1,l′,s′≥0

g̃l′ls′s(cos ξ)

(
∂l′+s′

∂xl′∂ys′
f

)
(cos ξ, sin ξ)

+
∑

l+s≤r,
l,s≥0

c̃ls(sin ξ)

(
∂s−1

∂ys−1

[
∂l

∂xl
f

])
(cos ξ, sin ξ)

+
∑

0≤r′<r−1

cr′

(sin ξ)q−r′
dr

′
v0(ξ)

dξr′
, (35)

where |g̃l′ls′s(cos ξ)| ≤ κ(sin ξ)−(1−2l′−s′+q−s) and |c̃ls(sin ξ)| ≤ κ(sin ξ)−(q−2l−s).

Then, since
0 ≤ 2(p′ + l′) + q′ + s′ ≤ −1 + q − s− 1 ≤ −2 + q,

it follows that

∂p′+q′

∂xp′∂yq′

(
∂l′+s′

∂xl′∂ys′
f

)
= 0 at (±1,−2) for 0 ≤ 2p′ + q′ ≤ −1− 2l′ − s′ + q − s− 1. (36)

Similarly, considering
0 ≤ 2(p′ + l′) + q′ + s′ − 1 ≤ −2 + q,

we deduce that
∂p′+q′

∂xp′∂yq′

(
∂s−1

∂ys−1

[
∂l

∂xl
f

])
= 0 at (±1,−2) for 2p′ + q′ ≤ q − 2l − s− 1. (37)
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This results in the boundedness of the first and second terms, by using Lemma 2.1. We demonstrate the boundedness of the
third sum on the right-hand side of equation (35) using an inductive approach on the variable r. Consider the sum defined by

Sr =
∑

0≤r′<r−1

cr′

(sin ξ)q−r′
dr

′
v0(ξ)

dξr′
,

where cr′ are coefficients, ξ is the variable, and v0 is a function of ξ. We aim to show that Sr is bounded for all r ≥ 0. We
proceed by induction on r.

Initial Step: For r = 0,

S0 = 0,

as there are no terms in the sum, hence S0 is trivially bounded.

Inductive Step: Assume Sr is bounded for r ≥ 0.

Consider the sum defined by

Sr+1 =
∑

0≤r′<r−1

cr′

(sin ξ)q−r′
dr

′
v0(ξ)

dξr′
+

cr−1

(sin ξ)q−r+1

dr−1v0(ξ)

dξr−1
. (38)

If we substitute the right-hand side of (38) with expression (35) for Sr, then under the assumption that Sr is bounded, Sr+1

will also be bounded.

D. Lemma
If q ≤ 1 or if the compatibility conditions are satisfied for 2+3n ≥ −2+ q ≥ 0, then the following inequality is established:∣∣∣∣∂θ0∂r

∣∣∣∣
L2(D∗)

≤ κε−
1
2 ,

∣∣∣∣∂θ0∂ξ

∣∣∣∣
L2(D∗)

≤ κε
1
2 .

∣∣Lε(θ
0 − θ̄0)

∣∣
L2(D∗)

≤ κε
1
2 . (39)

Proof.

Applying Lemma 2.1 with s = 1, m = 0, l = 0, and n = 0, and using Lemma 2.2 we obtain an upper bound:∣∣∣∣∂θ0∂r

∣∣∣∣
L2(D∗)

≤ κϵ−1/2.

Similarly, the boundedness of the derivative with respect to ξ:∣∣∣∣∂θ0∂ξ

∣∣∣∣
L2(D∗)

≤ κϵ1/2.

is also easily derived from Lemma 2.1. We now estimate Lϵ(θ
0 − θ0). From from Lemmas 2.2, we note that
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∣∣∣∣∂2(θ0 − θ̄0)

∂ξ2

∣∣∣∣
L2(D∗

R/2
)

=

∣∣∣∣∂2θ0

∂ξ2
(δ −R)

∣∣∣∣
L2(D∗

R/2
)

≤ κϵ
1
2 ,∣∣∣∣∂(θ0 − θ̄0)

∂r

∣∣∣∣
L2(D∗

R/2
)

=

∣∣∣∣∂θ0∂r
(δ −R)

∣∣∣∣
L2(D∗

R/2
)

+

∣∣∣∣θ0 ∂(δ −R)

∂r

∣∣∣∣
L2(D∗

R/2
)

≤ κϵ−
1
2 + κϵ

1
2 ≤ κϵ−

1
2 ,∣∣∣∣∂(θ0 − θ̄0)

∂ξ

∣∣∣∣
L2(D∗

R/2
)

=

∣∣∣∣∂θ0∂ξ
(δ −R)

∣∣∣∣
L2(D∗

R/2
)

≤ κϵ
1
2 ,

∣∣∣∣∂l+m(θ̄0 − θ0)

∂rl∂ξm

∣∣∣∣
L2(D∗

R/2
)

=

∣∣∣∣∂l+m(θ̄0 − θ0)

∂rl∂ξm

∣∣∣∣
L2(D∗

R/2
)

≤ κϵ
1
2 (m

′−l),

where m′ =

{
0, if m = 0,

1, if m = 1 or 2.
(40)

Using (2.6) and (2.8), we find that

∣∣Lϵ(θ̄
0 − θ0)

∣∣
L2(D∗

R/2
)
≤

∑
1≤m+l≤2
0≤l≤1

∣∣∣∣εSl,m(r, cos ξ, sin ξ)
∂l+m(θ̄0 − θ0)

∂rl∂ξm

∣∣∣∣
L2(D∗

R/2
)

+

∣∣∣∣ cos ξ

H ′(1− r)

∂(θ̄0 − θ0)

∂ξ

∣∣∣∣
L2(D∗

R/2
)

≤ κϵ
1
2 + κϵ

1
2 ≤ κϵ

1
2 . (41)

E. Theorem
The following estimate holds:

∥uε − u0 − θ̄0∥H1(D) ≤ κε
1
2 , (42)

where θ̄0 is the corrector in (9).

Proof.

For the error analysis of solution, writing w = uε − u0 − θ̄0, we deduce that{
−ε∆w − wy = R.H.S.,
w = 0 on ∂D.

(43)

Using the approximate form θ̄0 for θ0 we write Lεθ̄0 = Lεθ
0 + Lε(θ̄0 − θ0), and then (Lεθ

0, φ) = (Lεθ
0, φδ(r)) for

all φ ∈ H1
0 (D) where (, ) is the scalar product in the space L2(D) and δ(r) is a smooth function such that δ(r) = 1 if

r ≤ 3R/4 and δ(r) = 0 if r ≥ R/2. Note that θ0 = 0 for r ≤ R/2.

We first observe that

R.H.S. = ε∆u0 − Lε(θ
0) + Lε(θ

0 − θ̄0). (44)

Taking the scalar product of (44) with eyw we find with D∗:



NCT-Corrector: Non-Conformal Transformation Corrector for Convection-Dominated Boundary Layer Problems

ε∥w∥2H1(D) + ∥w∥2L2(D) ≤ |ε(∆uε, eywδ(r))|+
∣∣(Lε(θ

0), eywδ(r))
∣∣+ ∣∣(Lε(θ

0 − θ̄0), eywδ(r))
∣∣ (45)

≤ κε∥u0∥H1(D)∥w∥H1(D)

+

∣∣∣∣∣∣∣∣
−ε

∑
1≤m+l≤2
0≤l≤1

Sl,m(r, cos ξ, sin ξ)
∂l+mθ0

∂rl∂ξm
− cos ξ

H ′(1− r)

∂θ0

∂ξ
, eywδ(r)


∣∣∣∣∣∣∣∣

+
∣∣(Lε(θ

0 − θ̄0), eywδ(r))
∣∣ (46)

≤ κε∥u0∥H1(D)∥w∥H1(D)

+ ε(κ ∥S0,1∥L2(D∗) + κ ∥S0,2∥L2(D∗))

∥∥∥∥∂θ0∂ξ

∥∥∥∥
L2(D∗)

(∥∥∥∥∂w∂ξ δ(r)
∥∥∥∥
L2(D∗)

+ ∥wδ(r)∥L2(D∗)

)

+

(
κ

∥∥∥∥εS1,0
∂θ0

∂r
+ εS1,1

∂2θ0

∂r∂ξ

∥∥∥∥
L2(D∗)

+ κ

∥∥∥∥cos ξ ∂θ0∂ξ

∥∥∥∥
L2(D∗)

)
∥wδ(r)∥L2(D∗)

+ κ
∥∥Lε(θ

0 − θ̄0)
∥∥
L2(D∗

R/2
)
∥wδ(r)∥L2(D∗) . (47)

Using Lemma 2.2, we obtain
∥w∥L2(D) + ε

1
2 ∥w∥H1(D) ≤ kε

1
2 . (48)

We now establish the semi-analytic SL-PINN method as

ṽ(r, ξ; θ) =
(
v̂(r, ξ; θ)− v̂(1, ξ; θ)φ̄0

)
C(r, ξ) (49)

where C(r, ξ) is given by

C(r, ξ) =

{
1− r3, if 0 ≤ ξ ≤ π,

1− r3 − (r sin ξ)3, if π < ξ < 2π,
(50)


